
 

                        

                           Notes on the Equivalence Relation, Congruence modulo 3  (   ( mod 3 )  )   

 

It is proved below that    ( mod 3 )  is an equivalence relation (i.e., it is reflexive, symmetric, and transitive), and 

a similar proof shows that, for any modulus  n  >  0 ,    ( mod n )  is an equivalence relation, also. 

 

Definition:  Define the relation “Congruence modulo 3” on the set of integers  as follows: 

   For all  a ,  b     ,      a   ( mod 3 )  b    if and only if     3  ( a – b )   

                        [ Equivalently:   a      b  (mod n)     if and only if     3  ( a – b )    ]  . 

Similarly, let  n  be any positive integer,  n  >  0 .  Define  “Congruence modulo  n ”  as follows: 
 

        For all  a ,  b     ,      a   ( mod n )  b    if and only if     n  ( a – b ) .        (n is called the “modulus”.) 

   

The Traditional Notation:      " a   ( mod n )  b  "    is usually expressed as:    "  a    b   ( mod n )  " . 

 

  (Mod 3) examples:  ( Here, n  =  3 )  

 

    22   ( mod 3 )  16    since    3   ( 22 – 16 ) .         Equivalently,   22    16  ( mod 3 ) . 

    17   ( mod 3 )   2     since    3   ( 17 – 2 ) .         Equivalently,   17    2   ( mod 3 ) . 

    21   ( mod 3 )   0     since    3   ( 21 – 0 ) .         Equivalently,   21    0   ( mod 3 ) . 

 

In fact,  for all a      ,   3 a   ( mod 3 )   0    since   3    ( 3 a – 0 ) . 

Thus, all multiples of  3  are (mod 3) congruent to 0  . 

 

Note:   22   =   1  +  21 ,  so  22   =    “1 + (multiple of 3)”   and     

           16   =   1  +  15 ,  so  16   =    “1 + (multiple of 3)”   ,   and        22   ( mod 3 )  16  . 

 

This is no coincidence.  Any  “1 + (multiple of 3)”    ( mod 3 )   Any other   “1 + (multiple of 3)” . 

  Thus, for any integers k and l ,   1  +  3 k    ( mod 3 )   1  +  3 l    since    ( 1 + 3 k )  –  ( 1  +  3 l )   =    3 ( k – l )    

      and   3  3 ( k – l  ) . 

Similarly,   2  +  3 k     ( mod 3 )   2  +  3 l     and     0  +  3 k    ( mod 3 )   0  +  3 l  . 
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Similarly, when any modulus  n  >  0  is used:   Say  n  =  8  and we are considering the relation    ( mod 8 ) : 

  57  =  1  +  8  7    and    25  =  1  +  8  3  ,  and    ( 57 – 25 )  =  32 ,   so  8   ( 57 – 25 )  , so,  

by definition of    ( mod 8 ) ,    57   ( mod 8 )  25,  or in traditional notation,   57    25  ( mod 8 ) . 

 

So,  22    16   ( mod 3 )        3    ( 22 – 16 )  =   6       ( Both are of the form 1  +  “multiple of 3” ) 

And,  17    2   ( mod 3 )       3    ( 17 – 2 )  =   15        ( Both of the form are  2  +  “multiple of 3” ) 

And,  29    15  ( mod 7 )       7    ( 29 – 15 )  =   14 .    ( Both of the form are  1  +  “multiple of 7” ) 

    Equivalently,   29   ( mod 7 )  15 .     

 

What follows is a proof  that the relation  “   ( mod 3 )  ”   is an Equivalence Relation. 

That is, in the following proof, it is proved that 

                           the relation   “   ( mod 3 )  ”   is Reflexive, Symmetric, and Transitive. 

 

RULE:  In all proofs involving relations, as for instance, "relation R", whenever the definition of relation R is 

applied, the justification  “  by definition of  R  ”   must be included. 
 

Note how in the proofs below, whenever the definition of the relation "  ( mod 3 ) "  is applied, the justification 

   “  by definition of  '  ( mod 3 ) ', ”  is included.    

 

Theorem (From Example 8.2.4): 

                          “   ( mod 3 )  ”   is an Equivalence Relation. 

 

Proof:  [ NTS  “   ( mod 3 )   ”  is  reflexive, symmetric and transitive. ] 

  [ We prove that   “   ( mod 3 )  ”  is  Reflexive. ] 

     Let  x    be given.           [ NTS  that   x    ( mod 3 )  x  ] 

      x  –  x   =   0   and  0  =  3    0 .    ( x  –  x )   =  3    0 .    3    ( x  –  x ) .    

         x    ( mod 3 )   x , by definition of   “   ( mod 3 )  ” . 

         “   ( mod 3 )  ”  is  reflexive, by direct proof .   

                                                                    [ End of the "reflexivity" proof ]  
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  [We prove that   “   ( mod 3 )   ”  is  Symmetric.  ]        

          Let  x     and  y     be given .    

          Suppose    x    ( mod 3 )   y  .              [ NTS  that   y    ( mod 3 )  x .  ] 

        Then,   3   ( x – y )  ,  by definition of   “   ( mod 3 )  ” .   

    ( x  –  y )   =   3 k   for some integer k  .    ( y  –  x )   =   3 ( – k ) .    3     ( y  –  x ) .    

     y    ( mod 3 )  x  ,  by definition of   “   ( mod 3 )  ” .    

    “    ( mod 3 )  ”  is symmetric, by direct proof .    

                                                                 [ End of the "symmetry" proof ] 

 

  [We prove that   “   ( mod 3 )   ”  is  Transitive ] 

     Let  x   ,  y     and  z     be given .   

    Suppose    x    ( mod 3 )   y     and     y   ( mod 3 )   z .      [ NTS  that   x    ( mod 3 )  z . ] 

     Then,  by definition of   “   ( mod 3 )  ”,   3   ( x – y )   and    3   ( y – z )  .   

     ( x  –  y )   =   3 k    and   ( y  –  z )   =   3 l   for some integers  k  and  l . 

       x   =   y + 3 k    and    z   =   y  –  3 l ,   by Rules of Algebra . 

       x  –  z    =   ( y + 3 k )  –  ( y   –  3 l  ) , by substitution. 

       x  –  z    =   3 k   +  3 l    =   3 (  k +  l  )   and    (  k +  l  )  is an integer.    3     ( x  –  z ) . 

       x    ( mod 3 )   z ,  by definition of   “   ( mod 3 )  ” . 

      For all x ,  y ,  z    ,  if  x   ( mod 3 )  y   and   y   ( mod 3 )   z  ,  then   x    ( mod 3 )  z , by direct proof. 

      “    ( mod 3 )  ”  is transitive, by direct proof .      

                                                           [ End of the "transitivity" proof ] 

      “    ( mod 3 )  ”  is  reflexive ,  symmetric ,  and  transitive.   

      “    ( mod 3 )  ”  is  an Equivalence Relation.    

                                                                            Q E D 

 

Similarly,  for  any  n      such that   n  >  0 ,     “   ( mod n )  ”  is  an Equivalence Relation . 
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COMMENTS REGARDING THE "by Direct Proof" JUSTIFICATION USED ABOVE 

 

Note 1:  In the part of the proof above that proves that  relation  R  is reflexive, the conclusion that  relation R 

has been proved to be reflexive is justified using the phrase "by Direct Proof," that is, the conclusion is: 

               " '   ( mod 3 )  '  is  reflexive, by direct proof ."   

 

This wording is a shortened form of the full statement of the conclusion, namely: 

                    "  For all x   ,   x   ( mod 3 )  x , by direct proof .   

                       '   ( mod 3 )  '  is reflexive, by definition of  'reflexive'. " 

 

 

Note 2:  In the part of the proof above that proves that  relation  R  is symmetric, the conclusion that  relation R 

has been proved to be symmetric is justified using the phrase "by Direct Proof," that is, the conclusion is: 

               " '   ( mod 3 )  '  is  symmetric, by direct proof ."   

 

This wording is a shortened form of the full statement of the conclusion, namely: 

              "  For all   x ,  y     ,  if  x   ( mod 3 )  y ,  then   y    ( mod 3 )  x , by direct proof.     

                 '   ( mod 3 )  '  is symmetric, by definition of  'symmetric'. " 

 

 

 

Note 3:  In the part of the proof above that proves that  relation  R  is transitive, the conclusion that  relation R 

has been proved to be transitive is justified using the phrase "by Direct Proof," that is, the conclusion is: 

               " '   ( mod 3 )  '  is  transitive, by direct proof ."   

 

This wording is a shortened form of the full statement of the conclusion, namely: 

         "  For all x ,  y ,  z    ,  if  x   ( mod 3 )  y   and   y   ( mod 3 )   z  ,  

                                                                        then   x    ( mod 3 )  z , by direct proof 

             '   ( mod 3 )  '  is transitive, by definition of  'transitive'. " 

 

The same wording of these conclusions can be used when any other relation  R  is being proved to be reflexive, 

symmetric, or transitive. 

 

 



 5 

 

Definition:   For an Equivalence Relation R on  a set  A ,  and for any  element  a   A ,  the “Equivalence Class  

of  a” or just the “Class of a”,  denoted  [ a ] ,   is the set    [ a ]  =  {  x    A    x  R  a  }  . 

 

Any element  b  in  A  such that   b  R  a  will also be an element in [ a ] , and  both  a  and  b will be called  

representatives  of the class  [ a ] , because, in that case,  [ b ]  =  [ a ] as sets. 

 

 One obvious representative of  [ a ]  =  the "Class of a"   is the element  a , but every other element of  [ a ]  is 

also a representative of that same equivalence class. 

 

A (Mod 3) Example:    What is the “Class of 2” ?      What is  [ 2 ] ?  

        Consider the equivalence relation  “    ( mod 3 )  ”   with underlying set  A  =   .     Let  a  =   2 . 

Then,  the “ Class of 2 ”  is  denoted   "[ 2 ]"   and      [ 2 ]   =   {  n         n    ( mod 3 )   2  } . 

  Let  k  be any integer  and  consider  t  =  3 k  +  2 .    [ We show that  ( 3k + 2 )     [ 2 ] .  ] 

  Then,  ( t – 2 )  =  3 k , and so,  3    ( t – 2 ) .         t    ( mod 3 )  2 ,  by definition of   “   ( mod 3 )  ” . 

.     t    [ 2 ] .       ( 3 k  +  2 )     [ 2 ] .        For all   k     ,   ( 3 k  +  2 )     [ 2 ]  , by direct proof. 

 {  t           t  =   3 k  +  2  for some integer k  }        [ 2 ]  .  (***) 

 

Now, suppose  that  s  is any integer such that   s    [ 2 ]  .  Then,   s   ( mod 3 )  2 ,  by definition of  "[ 2 ]" .    

 3  ( s – 2 ) ,  by definition of   “   ( mod 3 )  ” .     s – 2   =   3 l   for some integer  l .     s    =    3 l   +  2 .  

    s    {  t           t  =   3 k  +  2  for some  integer k  } .      

  [ 2 ]      {  t           t  =   3 k  +  2  for some  integer  k  } , by direct proof .    

 Combining this with (***) above, we have  proved that   

                                        [ 2 ]   =   {  t           t  =   3 k  +  2  for some  integer  k  } . 

                                                       [ 2 ]  =  {    .  .  .  ,  –7 ,  –4 ,  –1 ,  +2 ,  +5 , +8 ,  .  .  .   }   

These correspond to k values:                              .  .  .  ,  –3 ,  –2 , –1 ,    0 ,  +1 ,  +2 ,  .  .  .    

 

Note that: 

       (1) each integer in the class [ 2 ]  is exactly three less than the next higher integer in the same (mod 3) class  

and 

       (2) each integer in the class [ 2 ]  is exactly three more than the nearest lower integer in the same (mod 3) 

class  
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For the “(mod 3) congruence” equivalence relation,  

                          there are three  (3) distinct equivalence classes:  [ 0 ] ,  [ 1 ] ,  [ 2 ] . 

They are precisely:      

   [ 0 ]   =   {  t           t  =   3 k  +  0  for some  integer  k  }   =    { ... ,  –6 ,  –3 ,    0 ,  +3 ,  +6 ,  +9 , … } 

   [ 1 ]   =   {  t           t  =   3 k  +  1  for some  integer  k  }   =    { ... ,  –5 ,  –2 ,  +1 ,  +4 ,  +7,  +10 ,  …} 

   [ 2 ]   =   {  t           t  =   3 k  +  2  for some  integer  k  }   =    { ... ,  –4 ,  –1 ,  +2 ,  +5 ,  +8,  +11 ,  …} 

 

For the class of  2 ,  [ 2 ] ,  the integer  2  is a representative of  [ 2 ]  because  2    [ 2 ] . 

But,  5  and  8  are also elements of  [ 2 ] ,  

   so both of the integers  5  and  8  are  also representatives of the class of  2, since  [ 2 ]  =  [ 5 ]  =  [ 8 ] as sets.  

Thus,  –3 ,  0   and  9  are representatives of [ 0 ]  (because  [ –3 ]   =   [ 0 ]    =   [ 9 ]   as sets .) 

And,   –5 ,  1   and  13  are representatives of [ 1 ]  (because [ –5 ]   =   [ 1 ]    =   [ 13 ]   as sets .) 

 

A PREVIEW of Theorem (NIB) 4:  

                     For any  integer  a  and,  for any positive integer  n  >  0,  

                                                         a    ( mod n )  (  a  mod  n  )    

                                       [ Equivalently:   a      (  a  mod  n  )   (mod n) ]  . 

 

     For Example:      17   ( mod 3 )  ( 17  mod  3 ) ,  since   (17 mod  3)  =  2  and    17   ( mod 3 )  2  .     

That is, for the  integer  a = 17   and  for the positive integer  n  =  3 ,      a     ( mod n )   (  a  mod  n  )   . 

Using the Traditional Notation, this principle is almost unintelligible:    a      (  a  mod  n  )  ( mod n ) . 

 

Note:  For  “  ( mod 3 ) ” , there are only three (3) equivalence classes:   [ 0 ] ,   [ 1 ]  and  [ 2 ] . 

Similarly:   For “ ( mod 2 ) ”  ,  there are  2  equivalence classes:  [ 0 ]   and   [ 1 ]  . 

                   For “ ( mod 4 ) ”  ,  there are  4  equivalence classes:  [ 0 ] ,  [ 1 ] ,  [ 2 ]  and   [ 3 ]  . 

                   For “ ( mod 5 ) ”  ,  there are  5  equivalence classes:  [ 0 ] ,  [ 1 ] ,  [ 2 ] ,  [ 3 ]  and  [ 4 ]  .  

For “ ( mod n ) ”  ,  there are  n  equivalence classes:  [ 0 ] ,  [ 1 ] ,  [ 2 ] , . . .,  [ n– 2 ] ,   [ n – 1 ]  , for all n  +
.          


