Notes on the Equivalence Relation, Congruence modulo $3(\equiv(\bmod 3))$

It is proved below that $\equiv_{(\bmod 3)}$ is an equivalence relation (i.e., it is reflexive, symmetric, and transitive), and a similar proof shows that, for any modulus $n>0, \equiv(\bmod n)$ is an equivalence relation, also.

Definition: Define the relation "Congruence modulo 3" on the set of integers \mathbb{Z} as follows:
For all $\mathrm{a}, \mathrm{b} \in \mathbb{Z}, \quad \mathrm{a} \equiv{ }_{(\bmod 3)} \mathrm{b} \quad$ if and only if $3 \mid(\mathrm{a}-\mathrm{b})$
[Equivalently: $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n}) \quad$ if and only if $3 \mid(\mathrm{a}-\mathrm{b})$].
Similarly, let n be any positive integer, $\mathrm{n}>0$. Define "Congruence modulo n " as follows:
For all $a, b \in \mathbb{Z}, \quad a \equiv{ }_{(\bmod n)} b \quad$ if and only if $n \mid(a-b) . \quad(n$ is called the "modulus".)

The Traditional Notation: $\quad \mathrm{a} \equiv(\bmod \mathrm{n}) \mathrm{b} " \mathrm{is}$ usually expressed $\mathrm{as}: ~ " \mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ ".
(Mod 3) examples: (Here, $\mathrm{n}=3$)

$$
\begin{aligned}
& 22 \equiv(\bmod 3) 16 \quad \text { since } 3 \mid(22-16) . \quad \text { Equivalently, } 22 \equiv 16(\bmod 3) . \\
& 17 \equiv(\bmod 3) \quad 2 \quad \text { since } 3 \mid(17-2) . \quad \text { Equivalently, } 17 \equiv 2(\bmod 3) . \\
& 21 \equiv(\bmod 3) \quad 0 \quad \text { since } 3 \mid(21-0) . \quad \text { Equivalently, } 21 \equiv 0(\bmod 3) .
\end{aligned}
$$

In fact, for all $\mathrm{a} \in \mathbb{Z}, 3 \mathrm{a} \equiv(\bmod 3) 0$ since $3 \mid(3 \mathrm{a}-0)$.
Thus, all multiples of 3 are $(\bmod 3)$ congruent to 0.

Note: $22=1+21$, so $22=" 1+($ multiple of 3$) "$ and $16=1+15$, so $16=" 1+($ multiple of 3$) "$, and $22 \equiv(\bmod 3) 16$.

This is no coincidence. Any " $1+($ multiple of 3$) " \equiv(\bmod 3)$ Any other " $1+($ multiple of 3$)$ ".
Thus, for any integers k and $\ell, 1+3 \mathrm{k} \equiv(\bmod 3) 1+3 \ell$ since $(1+3 \mathrm{k})-(1+3 \ell)=3(\mathrm{k}-\ell)$ and $3 \mid 3(k-\ell)$.

Similarly, $2+3 \mathrm{k} \equiv(\bmod 3) 2+3 \ell \quad$ and $0+3 \mathrm{k} \equiv(\bmod 3) 0+3 \ell$.

Similarly, when any modulus $\mathrm{n}>0$ is used: Say $\mathrm{n}=8$ and we are considering the relation $\equiv(\bmod 8)$:

$$
57=1+8 \times 7 \text { and } 25=1+8 \times 3, \text { and }(57-25)=32, \text { so } 8 \mid(57-25), \text { so, }
$$

by definition of $\equiv(\bmod 8), 57 \equiv(\bmod 8) 25$, or in traditional notation, $57 \equiv 25(\bmod 8)$.
So, $22 \equiv 16(\bmod 3) \Leftrightarrow 3 \mid(22-16)=6 \quad$ (Both are of the form $1+$ "multiple of 3 ")
And, $17 \equiv 2(\bmod 3) \Leftrightarrow 3 \mid(17-2)=15 \quad$ (Both of the form are $2+$ "multiple of 3 ")
And, $29 \equiv 15(\bmod 7) \Leftrightarrow 7 \mid(29-15)=14$. (Both of the form are $1+$ "multiple of 7 ")
Equivalently, $29 \equiv(\bmod 7) 15$.

What follows is a proof that the relation " $\equiv_{(\bmod 3)} "$ is an Equivalence Relation.
That is, in the following proof, it is proved that
the relation " $\equiv(\bmod 3)$ " is Reflexive, Symmetric, and Transitive.

RULE: In all proofs involving relations, as for instance, "relation R ", whenever the definition of relation R is applied, the justification " by definition of R" must be included.

Note how in the proofs below, whenever the definition of the relation " $\equiv(\bmod 3)$ " is applied, the justification
" by definition of $\equiv_{(\bmod 3)}$ '," is included.

Theorem (From Example 8.2.4):

$$
" \equiv(\bmod 3) " \text { is an Equivalence Relation. }
$$

Proof: [NTS " $\equiv_{(\bmod 3)} "$ is reflexive, symmetric and transitive.]
[We prove that " $\equiv_{(\bmod 3)}$ " is Reflexive.]
Let $\mathrm{x} \in \mathbb{Z}$ be given. [NTS that $\mathrm{x} \equiv(\bmod 3) \mathrm{x}]$

$$
\mathrm{x}-\mathrm{x}=0 \text { and } 0=3 \times 0 . \therefore(\mathrm{x}-\mathrm{x})=3 \times 0 . \therefore 3 \mid(\mathrm{x}-\mathrm{x}) .
$$

$\therefore \mathrm{x} \equiv(\bmod 3) \mathrm{x}$, by definition of $" \equiv(\bmod 3)$ ".
$\therefore " \equiv(\bmod 3) "$ is reflexive, by direct proof .
[End of the "reflexivity" proof]
[We prove that " $\equiv(\bmod 3)$ " is Symmetric.]
Let $\mathrm{x} \in \mathbb{Z}$ and $\mathrm{y} \in \mathbb{Z}$ be given.
Suppose $\mathrm{x} \equiv{ }_{(\bmod 3)} \mathrm{y} . \quad[\mathrm{NTS}$ that $\mathrm{y} \equiv(\bmod 3) \mathrm{x}$.
Then, $3 \mid(x-y)$, by definition of " $\equiv(\bmod 3) "$.
$\therefore(\mathrm{x}-\mathrm{y})=3 \mathrm{k}$ for some integer $\mathrm{k} . \therefore(\mathrm{y}-\mathrm{x})=3(-\mathrm{k}) . \therefore 3 \mid(\mathrm{y}-\mathrm{x})$.
$\therefore \mathrm{y} \equiv(\bmod 3) \mathrm{x}$, by definition of $" \equiv(\bmod 3) "$.
$\therefore " \equiv(\bmod 3) "$ is symmetric, by direct proof .
[End of the "symmetry" proof]
[We prove that " $\equiv(\bmod 3)$ " is Transitive]
Let $\mathrm{x} \in \mathbb{Z}, \mathrm{y} \in \mathbb{Z}$ and $\mathrm{z} \in \mathbb{Z}$ be given.
Suppose $\mathrm{x} \equiv{ }_{(\bmod 3)} \mathrm{y}$ and $\mathrm{y} \equiv_{(\bmod 3)} \mathrm{z} . \quad\left[\mathrm{NTS}\right.$ that $\mathrm{x} \equiv{ }_{(\bmod 3) \mathrm{z} .]}$
Then, by definition of " $\equiv_{(\bmod 3)} ", 3 \mid(x-y)$ and $3 \mid(y-z)$.
$\therefore(\mathrm{x}-\mathrm{y})=3 \mathrm{k}$ and $(\mathrm{y}-\mathrm{z})=3 \ell$ for some integers k and ℓ.
$\therefore \mathrm{x}=\mathrm{y}+3 \mathrm{k}$ and $\mathrm{z}=\mathrm{y}-3 \ell$, by Rules of Algebra.
$\therefore \mathrm{x}-\mathrm{z}=(\mathrm{y}+3 \mathrm{k})-(\mathrm{y}-3 \ell)$, by substitution.
$\therefore \mathrm{x}-\mathrm{z}=3 \mathrm{k}+3 \ell=3(\mathrm{k}+\ell)$ and $(\mathrm{k}+\ell)$ is an integer. $\therefore 3 \mid(\mathrm{x}-\mathrm{z})$.
$\therefore \mathrm{x} \equiv(\bmod 3) \mathrm{z}$, by definition of $" \equiv(\bmod 3)$ ".
\therefore For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathbb{Z}$, if $\mathrm{x} \equiv(\bmod 3) \mathrm{y}$ and $\mathrm{y} \equiv(\bmod 3) \mathrm{z}$, then $\mathrm{x} \equiv(\bmod 3) \mathrm{z}$, by direct proof. $\therefore " \equiv(\bmod 3) "$ is transitive, by direct proof.
[End of the "transitivity" proof]
$\therefore " \equiv(\bmod 3) "$ is reflexive, symmetric, and transitive.
$\therefore " \equiv(\bmod 3) "$ is an Equivalence Relation.
Q E D

Similarly, for any $n \in \mathbb{Z}$ such that $n>0, " \equiv(\bmod n) "$ is an Equivalence Relation.

Note 1: In the part of the proof above that proves that relation R is reflexive, the conclusion that relation R has been proved to be reflexive is justified using the phrase "by Direct Proof," that is, the conclusion is:
$" \therefore ' \equiv(\bmod 3)^{\prime}$ is reflexive, by direct proof ."

This wording is a shortened form of the full statement of the conclusion, namely:

$$
\begin{aligned}
& \quad \therefore \text { For all } \mathrm{x} \in \mathbb{Z}, \mathrm{x} \equiv(\bmod 3) \mathrm{x}, \text { by direct proof } \\
& \therefore \equiv_{(\bmod 3)^{\prime}} \text { is reflexive, by definition of 'reflexive'. " }
\end{aligned}
$$

Note 2: In the part of the proof above that proves that relation R is symmetric, the conclusion that relation R has been proved to be symmetric is justified using the phrase "by Direct Proof," that is, the conclusion is:

$$
" \therefore^{\prime} \equiv(\bmod 3)^{\prime} \text { is symmetric, by direct proof ." }
$$

This wording is a shortened form of the full statement of the conclusion, namely:
$" \therefore$ For all $x, y \in \mathbb{Z}$, if $x \equiv(\bmod 3) y$, then $y \equiv(\bmod 3) x$, by direct proof.
\therefore ' $\equiv(\bmod 3)^{\prime}$ is symmetric, by definition of 'symmetric'. "

Note 3: In the part of the proof above that proves that relation R is transitive, the conclusion that relation R has been proved to be transitive is justified using the phrase "by Direct Proof," that is, the conclusion is:
$" \therefore$ ' $\equiv(\bmod 3)^{\prime}$ is transitive, by direct proof ."

This wording is a shortened form of the full statement of the conclusion, namely:
$\quad \therefore$ For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathbb{Z}$, if $\mathrm{x} \equiv(\bmod 3) \mathrm{y}$ and $\mathrm{y} \equiv(\bmod 3) \mathrm{z}$,
then $\mathrm{x} \equiv(\bmod 3) \mathrm{z}$, by direct proof
$\therefore \equiv_{(\bmod 3)}$ ' is transitive, by definition of 'transitive'."

The same wording of these conclusions can be used when any other relation R is being proved to be reflexive, symmetric, or transitive.

Definition: For an Equivalence Relation R on a set A , and for any element $\mathrm{a} \in \mathrm{A}$, the "Equivalence Class of a " or just the "Class of a ", denoted [a], is the set $[a]=\{x \in A \mid x R a\}$.

Any element b in A such that $b \mathrm{R}$ a will also be an element in [a], and both a and b will be called representatives of the class [a], because, in that case, [b] = [a] as sets.

One obvious representative of [a] = the "Class of a " is the element a, but every other element of [a] is also a representative of that same equivalence class.

A (Mod 3) Example: What is the "Class of 2"? What is [2] ?
Consider the equivalence relation $" \equiv(\bmod 3) "$ with underlying set $A=\mathbb{Z} . \quad$ Let $a=2$.
Then, the "Class of 2 " is denoted "[2]" and $[2]=\{n \in \mathbb{Z} \mid n \equiv(\bmod 3) 2\}$.
Let k be any integer and consider $\mathrm{t}=3 \mathrm{k}+2$. [We show that $(3 \mathrm{k}+2) \in$ [2].]
Then, $(\mathrm{t}-2)=3 \mathrm{k}$, and so, $3 \mid(\mathrm{t}-2) . \quad \therefore \mathrm{t} \equiv(\bmod 3) 2$, by definition of $" \equiv(\bmod 3)$ ".
$\therefore \mathrm{t} \in[2] . \quad \therefore(3 \mathrm{k}+2) \in[2] . \quad \therefore$ For all $\mathrm{k} \in \mathbb{Z},(3 \mathrm{k}+2) \in[2]$, by direct proof.
$\therefore\{\mathrm{t} \in \mathbb{Z} \mid \mathrm{t}=3 \mathrm{k}+2$ for some integer k$\} \subseteq[2] .\left({ }^{* * *}\right)$

Now, suppose that s is any integer such that $s \in[2]$. Then, $s \equiv(\bmod 3) 2$, by definition of "[2]".
$\therefore 3 \mid(\mathrm{s}-2)$, by definition of " $\equiv(\bmod 3) " . \quad \therefore \mathrm{s}-2=3 \ell$ for some integer $\ell . \therefore \mathrm{s}=3 \ell+2$.
$\therefore \mathrm{s} \in\{\mathrm{t} \in \mathbb{Z} \mid \mathrm{t}=3 \mathrm{k}+2$ for some integer k$\}$.
$\therefore[2] \subseteq\{\mathrm{t} \in \mathbb{Z} \mid \mathrm{t}=3 \mathrm{k}+2$ for some integer k$\}$, by direct proof.
Combining this with $\left({ }^{* * *}\right)$ above, we have proved that

$$
\begin{aligned}
{[2]=} & \{\mathrm{t} \in \mathbb{Z} \mid \mathrm{t}=3 \mathrm{k}+2 \text { for some integer } \mathrm{k}\} \\
& \therefore[2]=\{\ldots,-7,-4,-1,+2,+5,+8, \ldots\}
\end{aligned}
$$

These correspond to k values:

$$
\ldots,-3,-2,-1, \quad 0,+1,+2, \ldots
$$

Note that:
(1) each integer in the class [2] is exactly three less than the next higher integer in the same $(\bmod 3)$ class and
(2) each integer in the class [2] is exactly three more than the nearest lower integer in the same $(\bmod 3)$ class

For the " $(\bmod 3)$ congruence" equivalence relation, there are three (3) distinct equivalence classes: [0], [1], [2] .
They are precisely:

$$
\begin{aligned}
& {[0]=\{\mathrm{t} \in \mathbb{Z} \mid \mathrm{t}=3 \mathrm{k}+0 \text { for some integer } \mathrm{k}\}=\{\ldots,-6,-3,0,+3,+6,+9, \ldots\}} \\
& {[1]=\{\mathrm{t} \in \mathbb{Z} \mid \mathrm{t}=3 \mathrm{k}+1 \text { for some integer } \mathrm{k}\}=\{\ldots,-5,-2,+1,+4,+7,+10, \ldots\}} \\
& {[2]=\{\mathrm{t} \in \mathbb{Z} \mid \mathrm{t}=3 \mathrm{k}+2 \text { for some integer } \mathrm{k}\}=\{\ldots,-4,-1,+2,+5,+8,+11, \ldots\}}
\end{aligned}
$$

For the class of 2 , [2], the integer 2 is a representative of [2] because $2 \in[2]$.
But, 5 and 8 are also elements of [2],
so both of the integers 5 and 8 are also representatives of the class of 2 , since [2] $=[5]=[8]$ as sets.
Thus, $-3,0$ and 9 are representatives of $[0]$ (because $[-3]=[0]=[9]$ as sets.)
And, $-5,1$ and 13 are representatives of [1] (because $[-5]=[1]=[13]$ as sets .)

A PREVIEW of Theorem (NIB) 4:
For any integer a and, for any positive integer $\mathrm{n}>0$,

$$
a \equiv(\bmod n)(a \bmod n)
$$

[Equivalently: $\mathrm{a} \equiv(\mathrm{a} \bmod \mathrm{n})(\bmod \mathrm{n})]$.

For Example: $\quad 17 \equiv(\bmod 3)(17 \bmod 3)$, since $(17 \bmod 3)=2$ and $17 \equiv(\bmod 3) 2$.
That is, for the integer $\mathrm{a}=17$ and for the positive integer $\mathrm{n}=3, \quad \mathrm{a} \equiv(\bmod \mathrm{n})(\mathrm{a} \bmod \mathrm{n})$.
Using the Traditional Notation, this principle is almost unintelligible: $a \equiv(a \bmod n)(\bmod n)$.

Note: For " $\equiv(\bmod 3) "$, there are only three (3) equivalence classes: [0], [1] and [2].
Similarly: For " $\equiv_{(\bmod 2)}$ ", there are 2 equivalence classes: [0] and [1].
For " $\equiv(\bmod 4) "$, there are 4 equivalence classes: [0], [1], [2] and [3].
For " $\equiv(\bmod 5) "$, there are 5 equivalence classes: $[0],[1],[2],[3]$ and $[4]$.
For " $\equiv(\bmod \mathrm{n}) "$, there are n equivalence classes: $[0],[1],[2], \ldots,[\mathrm{n}-2],[\mathrm{n}-1]$, for all $\mathrm{n} \in \mathbb{Z}^{+}$.

