Notes on the Equivalence Relation, Congruence modulo 3 ($\equiv_{(\text{mod } 3)}$)

It is proved below that $\equiv_{(\text{mod }3)}$ is an equivalence relation (i.e., it is reflexive, symmetric, and transitive), and a similar proof shows that, for any modulus n > 0, $\equiv_{(\text{mod }n)}$ is an equivalence relation, also.

Definition: Define the relation "Congruence modulo 3" on the set of integers \mathbb{Z} as follows:

For all $a, b \in \mathbb{Z}$, $a \equiv (\mod 3) b$ if and only if $3 \mid (a-b)$

[Equivalently: $a \equiv b \pmod{n}$ if and only if 3 | (a-b)].

Similarly, let n be any positive integer, n > 0. Define "Congruence modulo n" as follows:

For all $a, b \in \mathbb{Z}$, $a \equiv (\mod n) b$ if and only if $n \mid (a-b)$. (n is called the "modulus".)

The Traditional Notation: " $a \equiv (\mod n) b$ " is usually expressed as: " $a \equiv b \pmod{n}$ ".

(Mod 3) examples: (Here, n = 3)

 $22 \equiv (\mod 3) \ 16 \quad \text{since} \quad 3 \mid (22 - 16). \qquad \text{Equivalently,} \ 22 \equiv 16 \pmod{3}.$ $17 \equiv (\mod 3) \ 2 \quad \text{since} \quad 3 \mid (17 - 2). \qquad \text{Equivalently,} \ 17 \equiv 2 \pmod{3}.$ $21 \equiv (\mod 3) \ 0 \quad \text{since} \quad 3 \mid (21 - 0). \qquad \text{Equivalently,} \ 21 \equiv 0 \pmod{3}.$

In fact, for all $a \in \mathbb{Z}$, $3a \equiv_{(mod 3)} 0$ since $3 \mid (3a-0)$. Thus, all multiples of 3 are (mod 3) congruent to 0.

Note: 22 = 1 + 21, so 22 = "1 + (multiple of 3)" and 16 = 1 + 15, so 16 = "1 + (multiple of 3)", and $22 \equiv (mod 3) 16$.

This is no coincidence. Any "1 + (multiple of 3)" $\equiv \pmod{3}$ Any other "1 + (multiple of 3)".

Thus, for any integers k and ℓ , $1 + 3 k \equiv (\mod 3) 1 + 3 \ell$ since $(1 + 3 k) - (1 + 3 \ell) = 3 (k - \ell)$ and $3 \mid 3 (k - \ell)$.

Similarly, $2 + 3k \equiv (\mod 3) 2 + 3\ell$ and $0 + 3k \equiv (\mod 3) 0 + 3\ell$.

Similarly, when any modulus n > 0 is used: Say n = 8 and we are considering the relation $\equiv_{(\text{mod } 8)}$: $57 = 1 + 8 \times 7$ and $25 = 1 + 8 \times 3$, and (57 - 25) = 32, so $8 \mid (57 - 25)$, so, by definition of $\equiv_{(\text{mod } 8)}$, $57 \equiv_{(\text{mod } 8)} 25$, or in traditional notation, $57 \equiv 25 \pmod{8}$.

So, $22 \equiv 16 \pmod{3} \Leftrightarrow 3 \mid (22-16) = 6$ (Both are of the form $1 + \text{``multiple of } 3^{"}$) And, $17 \equiv 2 \pmod{3} \Leftrightarrow 3 \mid (17-2) = 15$ (Both of the form are $2 + \text{``multiple of } 3^{"}$) And, $29 \equiv 15 \pmod{7} \Leftrightarrow 7 \mid (29-15) = 14$. (Both of the form are $1 + \text{``multiple of } 7^{"}$) Equivalently, $29 \equiv (\mod{7}) 15$.

What follows is a proof that the relation " $\equiv_{(\text{mod }3)}$ " is an Equivalence Relation. That is, in the following proof, it is proved that

the relation " $\equiv_{(\text{mod }3)}$ " is Reflexive, Symmetric, and Transitive.

RULE: In all proofs involving relations, as for instance, "relation R", whenever the definition of relation R is applied, the justification " by definition of R " must be included.

Note how in the proofs below, whenever the definition of the relation " $\equiv (\mod 3)$ " is applied, the justification

" by definition of $' \equiv (\mod 3)'$," is included.

Theorem (From Example 8.2.4):

" $\equiv (\mod 3)$ " is an Equivalence Relation.

Proof: [NTS " $\equiv_{(\text{mod }3)}$ " is reflexive, symmetric and transitive.]

[We prove that " $\equiv_{(\text{mod }3)}$ " is Reflexive.]

Let $x \in \mathbb{Z}$ be given. [NTS that $x \equiv (\mod 3) x$]

$$x - x = 0$$
 and $0 = 3 \times 0$. $\therefore (x - x) = 3 \times 0$. $\therefore 3 | (x - x)$.

 $\therefore x \equiv (\mod 3) x$, by definition of " $\equiv (\mod 3)$ ".

 \therefore " $\equiv_{(\text{mod }3)}$ " is reflexive, by direct proof.

[End of the "reflexivity" proof]

[We prove that " $\equiv \pmod{3}$ " is Symmetric.]

Let $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$ be given.

Suppose $x \equiv (\mod 3) y$. [NTS that $y \equiv (\mod 3) x$.]

Then, $3 \mid (x-y)$, by definition of " $\equiv_{(\text{mod } 3)}$ ".

 $\therefore (x - y) = 3k \text{ for some integer } k \therefore (y - x) = 3(-k) \therefore 3 | (y - x).$

 $\therefore y \equiv_{(\text{mod }3)} x$, by definition of " $\equiv_{(\text{mod }3)}$ ".

 \therefore " $\equiv_{(\text{mod }3)}$ " is symmetric, by direct proof.

[End of the "symmetry" proof]

[We prove that " $\equiv_{(\text{mod }3)}$ " is Transitive]

Let $x \in \mathbb{Z}$, $y \in \mathbb{Z}$ and $z \in \mathbb{Z}$ be given.

Suppose $x \equiv (\mod 3) y$ and $y \equiv (\mod 3) z$. [NTS that $x \equiv (\mod 3) z$.]

Then, by definition of " $\equiv (\mod 3)$ ", $3 \mid (x-y)$ and $3 \mid (y-z)$.

 \therefore (x - y) = 3 k and (y - z) = 3 l for some integers k and l.

 $\therefore x = y + 3k$ and z = y - 3l, by Rules of Algebra.

 $\therefore x - z = (y + 3k) - (y - 3l)$, by substitution.

$$\therefore x - z = 3k + 3\ell = 3(k + \ell)$$
 and $(k + \ell)$ is an integer. $\therefore 3 \mid (x - z)$

 $\therefore x \equiv (\mod 3) z$, by definition of " $\equiv (\mod 3)$ ".

 \therefore For all x, y, $z \in \mathbb{Z}$, if $x \equiv (\mod 3)$ y and $y \equiv (\mod 3)$ z, then $x \equiv (\mod 3)$ z, by direct proof.

 \therefore " $\equiv_{(\text{mod }3)}$ " is transitive, by direct proof.

[End of the "transitivity" proof]

 \therefore " $\equiv_{(\text{mod }3)}$ " is reflexive, symmetric, and transitive.

 \therefore " $\equiv_{(\text{mod }3)}$ " is an Equivalence Relation.

QED

Similarly, for any $n \in \mathbb{Z}$ such that n > 0, " $\equiv_{(mod n)}$ " is an Equivalence Relation.

Note 1: In the part of the proof above that proves that relation R is reflexive, the conclusion that relation R has been proved to be reflexive is justified using the phrase "by Direct Proof," that is, the conclusion is:

":: ' $\equiv_{(\text{mod }3)}$ ' is reflexive, by direct proof ."

This wording is a shortened form of the full statement of the conclusion, namely:

": For all $x \in \mathbb{Z}$, $x \equiv (\mod 3) x$, by direct proof.

 \therefore ' $\equiv_{(\text{mod }3)}$ ' is reflexive, by definition of 'reflexive'. "

Note 2: In the part of the proof above that proves that relation R is symmetric, the conclusion that relation R has been proved to be symmetric is justified using the phrase "by Direct Proof," that is, the conclusion is:

":: ' $\equiv_{(\text{mod }3)}$ ' is symmetric, by direct proof."

This wording is a shortened form of the full statement of the conclusion, namely:

": For all x, $y \in \mathbb{Z}$, if $x \equiv (\mod 3) y$, then $y \equiv (\mod 3) x$, by direct proof.

 $\therefore' \equiv_{(\text{mod }3)}'$ is symmetric, by definition of 'symmetric'."

Note 3: In the part of the proof above that proves that relation R is transitive, the conclusion that relation R has been proved to be transitive is justified using the phrase "by Direct Proof," that is, the conclusion is:

":: ' $\equiv_{(\text{mod }3)}$ ' is transitive, by direct proof ."

This wording is a shortened form of the full statement of the conclusion, namely:

": For all x, y, $z \in \mathbb{Z}$, if $x \equiv (\mod 3) y$ and $y \equiv (\mod 3) z$,

then $x \equiv (\mod 3) z$, by direct proof

 \therefore ' $\equiv_{(\text{mod }3)}$ ' is transitive, by definition of 'transitive'. "

The same wording of these conclusions can be used when any other relation R is being proved to be reflexive, symmetric, or transitive.

Definition: For an Equivalence Relation R on a set A, and for any element $a \in A$, the "Equivalence Class of a" or just the "Class of a", denoted [a], is the set $[a] = \{x \in A \mid x R a\}$.

Any element b in A such that b R a will also be an element in [a], and both a and b will be called *representatives* of the class [a], because, in that case, [b] = [a] as sets.

One obvious representative of [a] = the "Class of a" is the element a, but every other element of [a] is also a representative of that same equivalence class.

A (Mod 3) Example: What is the "Class of 2"? What is [2]?

Consider the equivalence relation " $\equiv_{(\text{mod }3)}$ " with underlying set A = \mathbb{Z} . Let a = 2.

Then, the "Class of 2" is denoted "[2]" and [2] = { $n \in \mathbb{Z} \mid n \equiv (\text{mod } 3) 2$ }.

Let k be any integer and consider t = 3k + 2. [We show that $(3k+2) \in [2]$.]

Then, (t-2) = 3k, and so, $3 \mid (t-2)$. $\therefore t \equiv (\mod 3) 2$, by definition of " $\equiv (\mod 3)$ ".

 $\therefore t \in [2]$. $\therefore (3k + 2) \in [2]$. \therefore For all $k \in \mathbb{Z}$, $(3k + 2) \in [2]$, by direct proof.

 $\therefore \{ t \in \mathbb{Z} \mid t = 3k + 2 \text{ for some integer } k \} \subseteq [2] . (***)$

Now, suppose that s is any integer such that $s \in [2]$. Then, $s \equiv (\text{mod } 3) 2$, by definition of "[2]". $\therefore 3 \mid (s-2)$, by definition of " $\equiv (\text{mod } 3)$ ". $\therefore s-2 = 3\ell$ for some integer ℓ . $\therefore s = 3\ell + 2$. $\therefore s \in \{t \in \mathbb{Z} \mid t = 3k + 2 \text{ for some integer } k\}.$

 \therefore [2] \subseteq { t $\in \mathbb{Z}$ | t = 3k + 2 for some integer k }, by direct proof.

Combining this with (***) above, we have proved that

 $[2] = \{ t \in \mathbb{Z} \mid t = 3k + 2 \text{ for some integer } k \}.$ $\therefore [2] = \{ \dots, -7, -4, -1, +2, +5, +8, \dots \}$ alues: $\dots, -3, -2, -1, 0, +1, +2, \dots$

These correspond to k values:

Note that:

(1) each integer in the class [2] is exactly three less than the next higher integer in the same (mod 3) class and

(2) each integer in the class [2] is exactly three more than the nearest lower integer in the same (mod 3) class

For the "(mod 3) congruence" equivalence relation,

there are three (3) distinct equivalence classes: [0], [1], [2].

They are precisely:

 $\begin{bmatrix} 0 \end{bmatrix} = \{ t \in \mathbb{Z} \mid t = 3 k + 0 \text{ for some integer } k \} = \{ \dots, -6, -3, 0, +3, +6, +9, \dots \}$ $\begin{bmatrix} 1 \end{bmatrix} = \{ t \in \mathbb{Z} \mid t = 3 k + 1 \text{ for some integer } k \} = \{ \dots, -5, -2, +1, +4, +7, +10, \dots \}$ $\begin{bmatrix} 2 \end{bmatrix} = \{ t \in \mathbb{Z} \mid t = 3 k + 2 \text{ for some integer } k \} = \{ \dots, -4, -1, +2, +5, +8, +11, \dots \}$

For the class of 2, [2], the integer 2 is a representative of [2] because $2 \in [2]$. But, 5 and 8 are also elements of [2],

so both of the integers 5 and 8 are also representatives of the class of 2, since [2] = [5] = [8] as sets. Thus, -3, 0 and 9 are representatives of [0] (because [-3] = [0] = [9] as sets.) And, -5, 1 and 13 are representatives of [1] (because [-5] = [1] = [13] as sets.)

A PREVIEW of Theorem (NIB) 4:

For any integer a and, for any positive integer n > 0,

$$a \equiv (\mod n)$$
 ($a \mod n$)

[Equivalently: $a \equiv (a \mod n) \pmod{n}$].

For Example: $17 \equiv \pmod{3}$ (17 mod 3), since $(17 \mod 3) = 2$ and $17 \equiv \pmod{3} 2$. That is, for the integer a = 17 and for the positive integer n = 3, $a \equiv \pmod{n}$ (a mod n). Using the Traditional Notation, this principle is almost unintelligible: $a \equiv (a \mod n) \pmod{n}$.

Note: For " $\equiv (\mod 3)$ ", there are only three (3) equivalence classes: [0], [1] and [2].

Similarly: For " $\equiv (\mod 2)$ ", there are 2 equivalence classes: [0] and [1].

For " $\equiv (\mod 4)$ ", there are 4 equivalence classes: [0], [1], [2] and [3].

For " $\equiv (\mod 5)$ ", there are 5 equivalence classes: [0], [1], [2], [3] and [4].

For " $\equiv (\mod n)$ ", there are n equivalence classes: [0], [1], [2], ..., [n-2], [n-1], for all $n \in \mathbb{Z}^+$.