Notes on the Equivalence Relation, Congruence modulo 3 ( = (mod3) )

It is proved below that = moa3) IS an equivalence relation (i.e., it is reflexive, symmetric, and transitive), and

a similar proof shows that, for any modulus n > 0, =(mon) IS an equivalence relation, also.

Definition: Define the relation “Congruence modulo 3” on the set of integers Z as follows:
Forall a, b € Z, & =(mos3) b ifandonlyif 3 \ (a—b)

[ Equivalently: a = b (modn) ifandonlyif 3 | (a=b) 1.

Similarly, let n be any positive integer, n > 0. Define “Congruence modulo n” as follows:

Forall a, b € Z, & =(mwn) b ifandonlyif n | (a—b). (n is called the “modulus”.)

The Traditional Notation:  "a =(men) b " isusually expressedas: " a =b (modn) ".

(Mod 3) examples: (Here,n = 3)

22 =(mou3) 16 since 3| (22-16). Equivalently, 22 = 16 (mod 3).
17 =(moa3) 2 since 3 | (17-2). Equivalently, 17 = 2 (mod3).
21 =(mod3) O since 3 | (21-0). Equivalently, 21 = 0 (mod3).

Infact, foralla € Z , 3a =(moi3z) 0 since 3 | (3a-0).

Thus, all multiples of 3 are (mod 3) congruentto O .

Note: 22 = 1 + 21, so 22 = “1 + (multiple of 3)” and
16 = 1+ 15, s0 16 = *“1+ (multiple of 3)” , and 22 =(mod3) 16 .

This 1s no coincidence. Any “l + (multiple of 3)” = (moa3) Any other “l + (multiple of 3)” .

Thus, for any integerskand ¢, 1 + 3k =(moa3z) 1 + 3¢ since (1+3k) - (1+ 3¢) = 3(k-r)
and 3|3(k-¢).

Similarly, 2 + 3k =(mows) 2 + 3¢ and 0 + 3K =(moa3z) 0 + 3¢ .




Similarly, when any modulus n > 0 isused: Say n = 8 and we are considering the relation = (mods):
57 =1+8x7 and 25 =1+8x3,and (57-25) =32, so 8 | (57-25) , so,

by definition of = (mods), 57 =(mods) 25, orin traditional notation, 57 = 25 (mod 8).

So, 22 =16 (mod3) < 3 | (22-16) = 6  (Bothare of the form 1 + “multiple of 3”)
And, 17 =2 (mod3) <« 3 | (17-2) = 15 ( Both of the form are 2 + “multiple of 3”)
And, 29 = 15 (mod7) < 7 | (29-15) = 14. (Bothof the formare 1 + “multiple of 7)

Equivalently, 29 = mw7) 15.

What follows is a proof that the relation “ = moq3) ” is an Equivalence Relation.
That is, in the following proof, it is proved that

the relation “ =(moa3) ” is Reflexive, Symmetric, and Transitive.

RULE: In all proofs involving relations, as for instance, "relation R", whenever the definition of relation R is
applied, the justification *“ by definition of R ” must be included.

Note how in the proofs below, whenever the definition of the relation " = (moa3)~ is applied, the justification

“ by definition of ' = (mod3) ', ” is included.

Theorem (From Example 8.2.4):

“ =(mod3) ~ Isan Equivalence Relation.

Proof: [ NTS “ = (moa3) 7 is reflexive, symmetric and transitive. ]
[ We prove that “ =(moa3) ” is Reflexive. ]
Let x € Z be given. [NTS that X = (mod3) X ]
X—-x=0and0=3x0. ~.(x-x)=3x0. .3 | (x —x).
" X =(mod3) X,bydefinition of * = (me3) 7.

= (mod3) ” is reflexive, by direct proof .

[ End of the "reflexivity" proof ]




[We prove that “ = (moa3) 7 is Symmetric. ]
Let xeZ and y e Z begiven.

Suppose X =(mod3) Y - [NTS that y = (mod3) X. ]

Then, 3| (x—y) , by definition of “ = (mos) ”.

~(x —y) = 3k forsomeintegerk . .~ (y - x) = 3(-k). ~3 | (y - x).

b

oY =(mod3) X , by definition of “ = (moa3) .

‘ =(mod3) ~ 1S symmetric, by direct proof .

[ End of the "symmetry" proof ]

[We prove that “ = (meg3) ~ is Transitive ]

let xeZ,yeZ and z e Z begiven.

SUppOSE X =(mod3) Y and Y =(mod3) Z. [NTS that x = (mod3) Z.]

Then, by definition of “ = (mes) % 3| (x-y) and 3| (y-2z).

S (x—-y) = 3k and (y —z) = 3¢ forsome integers k and ¢.

~ X = y+3k and z = y - 3¢, byRulesof Algebra.

(y+3k) — (y — 3¢t),bysubstitution.

~X—-2z = 3k +3¢ = 3(k+¢) and (k+ ¢)isaninteger. 3 | (x - z).
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" X =(mod3) Z, bydefinition of *“ =(moa3) ”.
wForallx, y,z eZ, if X =(mod3) Y and Y =(mod3) Z , then X = moa3) Z, by direct proof.
‘ =(mod3) ~ is transitive, by direct proof .
[ End of the "transitivity" proof ]

‘ =(mod3) ~ is reflexive, symmetric, and transitive.

‘ =(mod3) ~ is an Equivalence Relation.

QED

Similarly, for any n € Z suchthat n > 0, “ =(mwn) ” is an Equivalence Relation .



COMMENTS REGARDING THE "by Direct Proof" JUSTIFICATION USED ABOVE

Note 1: In the part of the proof above that proves that relation R is reflexive, the conclusion that relation R
has been proved to be reflexive is justified using the phrase "by Direct Proof,"” that is, the conclusion is:

" =(mod3) ' IS reflexive, by direct proof ."

This wording is a shortened form of the full statement of the conclusion, namely:

" Forallx e Z, X =(mod3) X, by direct proof.

~ ' =(mod3) ' IS reflexive, by definition of 'reflexive’. "

Note 2: In the part of the proof above that proves that relation R is symmetric, the conclusion that relation R
has been proved to be symmetric is justified using the phrase "by Direct Proof," that is, the conclusion is:

" =(mod3) ' IS Symmetric, by direct proof ."

This wording is a shortened form of the full statement of the conclusion, namely:
"o oForall X,y € Z, if X =(moa3) Y, then Yy = (moa3) X, by direct proof.

' =(mod3) ' IS Symmetric, by definition of 'symmetric'.

Note 3: In the part of the proof above that proves that relation R is transitive, the conclusion that relation R
has been proved to be transitive is justified using the phrase "by Direct Proof," that is, the conclusion is:

"o =(mod3) ' IS transitive, by direct proof ."

This wording is a shortened form of the full statement of the conclusion, namely:
"ooForallx,y,z €eZ, if X =(muz) Y and Y =(mod3) Z .,
then X = (moda3) Z, by direct proof
' =(mod3) ' IS transitive, by definition of ‘transitive’. "

The same wording of these conclusions can be used when any other relation R is being proved to be reflexive,
symmetric, or transitive.



Definition: For an Equivalence Relation Ron aset A, and for any element a € A, the “Equivalence Class
of a” or just the “Class of a”, denoted [a], istheset [a] = {x e A| xR a}.

Anyelement b in A suchthat b R a will also be anelementin[a],and both a and b will be called
representatives of the class [a], because, inthat case, [b] = [a] as sets.

One obvious representative of [a] = the "Class of a" is the element a, but every other element of [a] is
also a representative of that same equivalence class.

A (Mod 3) Example: What is the “Class of 2”?  Whatis [2]?
Consider the equivalence relation “ = (mog3) ~ with underlyingset A = Z. Leta = 2.
Then, the “ Classof 2” is denoted "[2]" and [2] = {n e Z | N =(mw3) 2 }.
Let k be anyinteger and consider t = 3k + 2. [Weshowthat (3k+2) € [2]. ]
Then, (t—2) = 3k,andso, 3 | (t—=2). . t =(mos) 2, by definition of “ = (moas) .

~tel2]. - (3k+2)e [2]. S Forall ke Z, (3k+2) e [2] ,bydirect proof.

~{teZ | t= 3k + 2 forsomeintegerk } < [2] . (***)

Now, suppose that s isany integer suchthat s € [2] . Then, S =(moa3) 2, by definitionof "[2]".
.3 | (s—=2), by definition of =(mod3) . ..S$—2 = 3¢ forsomeinteger (. .. s = 3¢ + 2.

~se{teZ | t= 3k + 2 forsome integerk }.

w2 ¢ {teZ | t= 3k + 2 forsome integer k }, by direct proof .
Combining this with (***) above, we have proved that
[2] = {teZ | t= 3k + 2 forsome integer k }.

2[21={ ..., 7,4, -1,+42,+5,48, ...}

These correspond to k values: e, =3,-2,-1, 0, +1, +2, ...

Note that:
(1) each integer in the class [ 2] is exactly three less than the next higher integer in the same (mod 3) class
and

(2) each integer in the class [ 2] is exactly three more than the nearest lower integer in the same (mod 3)
class



For the “(mod 3) congruence” equivalence relation,
there are three (3) distinct equivalence classes: [0], [1], [2].
They are precisely:

[0] = {teZ | t= 3k + 0 forsome integer k } = {.., 6, -3, 0, +3, +6, +9, ...}
[1] = {teZ | t= 3k + 1 forsome integer kK } = {.., -5, -2, +1, +4, +7, +10, ...}
[2] = {teZ | t= 3k + 2 forsome integer k } = {.., 4, -1, +2, +5, +8, +11, ...}

For the classof 2, [2], the integer 2 isa representative of [2] because 2 € [2].
But, 5 and 8 are also elementsof [2],
so both of the integers 5 and 8 are also representatives of the class of 2,since [2] = [5] = [8] as sets.
Thus, -3, 0 and 9 are representatives of [0 ] (because [-3] = [0] = [9] assets.)
And, -5, 1 and 13 are representativesof [ 1] (because [-5] = [1] = [13] assets.)

A PREVIEW of Theorem (NIB) 4:
For any integer a and, for any positive integer n > 0,

a =(modn) (@ mod n)

[ Equivalently: a = (a mod n) (modn)] .

For Example: 17 =(mod3) (17 mod 3), since (17mod 3) = 2 and 17 = (mod3) 2 .
That is, for the integer a =17 and for the positive integer n = 3, & =(modn) (@ mod n) .

Using the Traditional Notation, this principle is almost unintelligible: a = (a mod n ) (modn).

Note: For “ = mod3)” , there are only three (3) equivalence classes: [0], [1] and [2].
Similarly: For “= (mea2)” , there are 2 equivalence classes: [0] and [1] .

For “= (moda)” , there are 4 equivalence classes: [0], [1], [2] and [3] .

For “= (mod5)” , there are 5 equivalence classes: [0], [1], [2], [3] and [4] .

For “= (modn)” , there are n equivalence classes: [0], [1], [2],..., [n-2], [n-1] ,forallneZ".




